Determining the difficulty of Word Sense Disambiguation

نویسندگان

  • Bridget T. McInnes
  • Mark Stevenson
چکیده

Automatic processing of biomedical documents is made difficult by the fact that many of the terms they contain are ambiguous. Word Sense Disambiguation (WSD) systems attempt to resolve these ambiguities and identify the correct meaning. However, the published literature on WSD systems for biomedical documents report considerable differences in performance for different terms. The development of WSD systems is often expensive with respect to acquiring the necessary training data. It would therefore be useful to be able to predict in advance which terms WSD systems are likely to perform well or badly on. This paper explores various methods for estimating the performance of WSD systems on a wide range of ambiguous biomedical terms (including ambiguous words/phrases and abbreviations). The methods include both supervised and unsupervised approaches. The supervised approaches make use of information from labeled training data while the unsupervised ones rely on the UMLS Metathesaurus. The approaches are evaluated by comparing their predictions about how difficult disambiguation will be for ambiguous terms against the output of two WSD systems. We find the supervised methods are the best predictors of WSD difficulty, but are limited by their dependence on labeled training data. The unsupervised methods all perform well in some situations and can be applied more widely.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

رفع ابهام معنایی واژگان مبهم فارسی با مدل موضوعی LDA

Word sense disambiguation is the task of identifying the correct sense for the word in a given context among a finite set of possible sense. In this paper a model for farsi word sense disambiguation is presented. The model use two group of features: first, all word and stop words around target word and topic models as second features. We extract topics from a farsi corpus with Latent Dirichlet ...

متن کامل

A Review Of Literature On Word Sense Disambiguation

lexical ambiguity is a fundamental characteristic of language. Words can have more than one distinct meaning. Word sense disambiguation is defined as the problem of computationally determining which”sense”of a word is correct in given context. Word sense disambiguation is a task of classification where word senses are the classes, the context provides the evidence, and each occurrence of a word...

متن کامل

Investigating Problems of Semi-supervised Learning for Word Sense Disambiguation

Word Sense Disambiguation (WSD) is the problem of determining the right sense of a polysemous word in a given context. In this paper, we will investigate the use of unlabeled data for WSD within the framework of semi supervised learning, in which the original labeled dataset is iteratively extended by exploiting unlabeled data. This paper addresses two problems occurring in this approach: deter...

متن کامل

Latent Semantic Word Sense Induction and Disambiguation

In this paper, we present a unified model for the automatic induction of word senses from text, and the subsequent disambiguation of particular word instances using the automatically extracted sense inventory. The induction step and the disambiguation step are based on the same principle: words and contexts are mapped to a limited number of topical dimensions in a latent semantic word space. Th...

متن کامل

Word-Sense Disambiguation for Machine Translation

In word sense disambiguation, a system attempts to determine the sense of word from contextual features. Major barriers to building a highperforming word sense disambiguation system include the difficulty of labeling data for this task and of predicting fine-grained sense distinctions. In contrast, we can use parallel language corpora as a large supply of potential data. In this paper we presen...

متن کامل

A Fully Unsupervised Word Sense Disambiguation Method Using Dependency Knowledge

Word sense disambiguation is the process of determining which sense of a word is used in a given context. Due to its importance in understanding semantics of natural languages, word sense disambiguation has been extensively studied in Computational Linguistics. However, existing methods either are brittle and narrowly focus on specific topics or words, or provide only mediocre performance in re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2014